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Abstract—Modern aircraft wings are thin walled structures made of 
ribs, spars and stiffened panels and top skin. In flight the top skin is 
subjected to high compressive force that can cause buckling 
instability. The manufacture of advanced stiffened panels with 
variable tow angles can lead to panels with flat profile on one side 
and smooth curved profile on other side. In this paper we attempted 
to design stiffened panels with variable angle tow and also with flat 
and curved profile. An FEA model is generated and an analysis is 
made to investigate the effect of stress concentration and buckling 
behavior of panels of variable angle tow (VAT). Also designs of 
symmetric VAT panels and asymmetric VAT panels are generated 
and analyzed. Based on the analysis models of stiffened panel which 
have increased strength on buckling performance are proposed. 
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1. INTRODUCTION 

Aircraft structural systems are thin-walled structures with 
wing structure composed of ribs, spars and stiffened panels. 
For civil aircraft, the top skin is, under aerodynamic loading, 
subject to axial compressive forces that can cause buckling 
instability. Typically these stiffened panels can have a 
considerable postbuckling reserve of strength, enabling them 
to remain in stable equilibrium under loads in excess of their 
critical buckling load, provided the initial buckling mode is a 
local one. 

Aircraft wing components and fuselage components are 
joined, in metallic structure, by means of riveting (and more 
recently welding) to form complete wing and fuselage 
structure. For stiffened panel construction components can be 
machined integrally. Single piece stiffened panels have several 
potential advantages that include cost savings through 
reductions in assembly labour, tooling, part count and 
manufacturing time. 

Stiffened panels are commonly used on aircraft as 
primarystructures such as wing covers and fuselage panels . 
Stiffenedpanels typically consist of a plate braced by 
longitudinal stiffenersand are an efficient conFig. uration for 
carrying compressive loads, particularly when buckling is a 
design driver as is the case for aircraftwing covers. 

A stiffened panel can fail via a variety of mechanisms 
including skin-stiffener debonding material strength failure 
and buckling. Buckling failure predominantly occurs in one of 
two modes as shown in Fig. . 1; local, where thestiffeners act 
as ‘panel breakers’ forcing the skin to buckle locallybetween 
the stiffeners and global, where both plate and stiffeners 
buckle out-of-plane. Confining the buckling mode to be local 
is preferential to global as it, in general, leads to lighter 
designsand greater post-buckling stiffness. The local mode’s 
higher post-buckling stiffness is due to the unbuckled 
stiffeners carryingload in the post-buckling regime. 

Buckling of stiffened panels has received considerable 
attentiondating as far back as 1921 by Timoshenkowho used 
the Ritzmethod to analyze isotropic longitudinally and 
transversely stiffenedplates subject to compression, shear and 
bending. Continuedinterest in this field has seen many 
publications in the past centurywith current research focussing 
heavily on composite stiffenedpanels. Local buckling analysis 
methods can be split intothree categories based on the 
consideration of the stiffener.Thefirst method treats the 
stiffener as a simple support which facilitatesfast closed-form 
solutions to be obtained but assumes nulltorsional restraint and 
hence underestimates the buckling load. 

The second method models the torsional restraint by 
replacingthe stiffener blade with an equivalent torsional spring 
or beamattached to the skin’s midplane. This method is often 
sufficientlysimple to obtain accurate closed-form solutions, 
howeveris strictly only valid for an unloaded stiffener and 
assumes no stiffenerblade buckling or warping. Correction 
factors reducing theeffective restraint in the case of an axially 
applied load to the stiffener have been proposed and provide 
improved solutions whenload is carried by the stiffener . The 
third method modelsboth the skin and stiffener as 
platesallowing local bucklingmodes of the stiffener and the 
interaction between the skinand stiffener to be captured. This 
higher fidelity approach has anincreased computational cost 
but provides a more robust solutionthan the elastic restraint 
method. 
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4.1 Symmetric VAT  

Dimensions : (275×152.77×10) & α = 0˚ 

Max. Deformation = 1.0024 mm 

 

Dimensions : (275×152.77×10) & α = 1.5˚ 

Max. Deformation = 1.0024 mm 

 

Dimensions : (275×152.77×10) & α = 3.0˚ 

Max. Deformation = 1.0025 mm 

 

Dimensions : (275×152.77×10) & α = 4.5˚ 

Max. Deformation = 1.0026 mm 

 

Dimensions : (275×152.77×10) & α = 6.0˚ 

Max. Deformation = 1.0026 mm 

 

Dimensions : (275×152.77×10) & α = 7.5˚ 

Max. Deformation = 1.0026 mm 
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4.2 Asymmetric VAT  

Dimensions:(275×152.77×10)α1=0˚,α2=1.5˚Max. 
Deformation = 1.0024 mm 

 

Dimensions:(275×152.77×10)α1=0˚,α2=3.0˚Max. 
Deformation = 1.0023 mm 

 

Dimensions:(275×152.77×10)α1=0˚,α2=4.5˚Max. 
Deformation = 1.0023 mm 

 

Dimensions:(275×152.77×10)α1=1.5˚,α2=3˚Max. 
Deformation = 1.0024 mm 

 

Dimensions(275×152.77×10)α1=1.5˚,α2=4.5˚Max. 
Deformation = 1.0024 mm 

 

Dimensions:(275×152.77×10)α1=3˚,α2=4.5˚Max. 
Deformation = 1.0025 mm 
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5. CONCLUSION 

On validating the results in this work the least deformation 
obtained for symmetric panels is 1.0024mm for α= 0˚ and for 
asymmetric panels is 1.0023mm for α1=0˚,α2=3.0˚ and 
α1=0˚,α2=4.5˚. Hence we propose a model of asymmetric 
stiffened panel with tow angles α1=0˚,α2=3.0˚ has gave the 
better buckling performance for the aircraft wing structure. 
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